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Abstract—In the growing era of smart cities, data-driven
decision-making is pivotal for urban planners and policymakers.
Crowd-sourced data is a cost-effective means to collect this in-
formation, enabling more efficient urban management. However,
ensuring data accuracy and establishing trustworthy “Ground
Truth” in smart city sensor data presents unique challenges.

Our study contributes by documenting the intricacies and
obstacles associated with overcoming MAC randomization, sensor
unpredictability, unreliable signal strength, and Wi-Fi probing
inconsistencies in smart city data cleaning. We shed light on the
practical difficulties faced during the “Ground Truth” establish-
ment process.

By presenting our findings, we aim to facilitate a deeper
understanding of the nuances involved in handling sensor data,
ultimately paving the way for more accurate and meaningful
data-driven decision-making in smart cities. Our experience un-
derscores the importance of addressing MAC randomization and
Wi-Fi probing challenges, emphasizing the need for innovative
solutions in the realm of urban data management.

Index Terms—counting people, occupancy estimation, MAC
randomization, Wi-Fi probing

I. INTRODUCTION

Overcrowding is an issue in cities around the world, es-
pecially in towns that draw thousands or millions of tourists
[1]. It is a safety hazard having too many people in one part
of a city. Overcrowded, narrow streets or venues with limited
points of entry or egress can lead to terrible tragedies like
trampling, terrorist attacks, and lone gunman scenarios. The
COVID-19 pandemic also made it essential that city planners
consider how many people can safely remain together indoors
or outdoors and at what distance. Additionally, overcrowding
is an inconvenience for businesses that rely on a traffic flow,
such as delivery services or taxis. When too many people
crowd an area, it strains vital resources, like the availability
of food or public transit.

Mitigating overcrowding situations requires a city to have
a plan in place. It also requires that the city have a metric to
distinguish overcrowding from normal crowd levels. To assess
crowd level, a smart city may use sensor data to collect a
real-time count of the number of people entering, leaving, or
remaining an area. Many emerging smart cities use camera
data. Yet, cameras may be more energy consumptive, more
expensive to install, and require line of sight with a target area
[2]. Not only that, but the installation of mounting hardware
can damage historical buildings. Overall, there are mixed

responses by the public in regards to surveillance by cameras,
especially depending on context [3].

An affordable and easily installed alternative to cameras
is using sensors to detect Wi-Fi probes, yet this area of
research has not been standardized. Our contribution to this
work is to create a framework for future researchers to use to
conduct experiments that incorporate the relationship between
the spatial layout of the city structures and the efficacy of the
sensor in detecting the devices present in the area. This work
is vital because of the recent spread of MAC Randomization
technology and its impact on data quality.

II. BACKGROUND

Smart City Bamberg in Bavaria, Germany, has installed
several Flowtrack sensors in locations throughout the city in
partnership with Safectory, a company based out of Bamberg.
As part of the smart city project, the CrowdAnym Project at the
University of Bamberg aims to collect and process anonymous
data to assess crowd levels [4].

The Flowtrack1 sensors work by receiving Wi-Fi probing
signals from mobile devices in its range and performing
anonymization of MAC Addresses by hashing the MAC Ad-
dress with a daily randomly-generated SALT value. It then
saves the hashed MAC in the CrowdAnym database so that
people’s MAC Addresses are not exposed.

There are several major benefits of using Wi-Fi signals
for counting people as an alternative to using cameras: cost-
effectiveness, unobstructed counting, and more anonymity [5].
However, there are also many serious data quality issues.

A. MAC Randomization Effect on Data Quality

Media Access Control (MAC) is hard coded to a Wi-Fi
capable device’s Network Interface Controller (NIC) by the
manufacturer. A phone’s MAC address is a unique hexadeci-
mal code that identifies a device on a network.

If MAC addresses are transmitted without encryption, they
can be captured and potentially used to track a user’s location.
In response to changes in data privacy laws, modern An-
droid and iPhone devices protect users’ privacy by generating

1Information about Flowtrack sensors can be found on https://www.uni-
bamberg.de/en/forschung/wissenschaftl-einrichtungen/forschungs-labs/smart-
city-research-lab/translate-to-1-english-projektarchiv/translate-to-1-english-
crowdanym/



a randomized MAC for each different Wi-Fi access point
encountered, rather than sending out the MAC address that
uniquely identifies that device. MAC addresses are randomized
for whatever connections are made in order to keep the users
anonymous and untraceable [6].

MAC randomization can cause problems for data quality
as each time a sensor is logging a probe, even if it is from
the same device, the MAC address is changing. It makes it
seem as if there are more people than there are on the ground,
leading to the problem of overestimation [7], see Fig. 1.

Fig. 1. Each device creates one randomized MAC address to send probe
requests to all surrounding Wi-Fi Access Points

Due to this overestimation problem, we believe that it is
imperative to set up a framework for researchers to use to
track various aspects, such as how many Access Points exist
in an area, what was the status of the device, and where each
device was detected.

B. Wi-Fi Probing Issues

The goal is to count the number of people in an area, but
when it comes to monitoring Wi-Fi probes, we cannot ensure
that it is only a person that we are counting. There are bikes,
scooters, cars, etc. A baby in a stroller may have a smart device
for entertainment. Even dogs may have collars that send out
Wi-Fi probes. Additionally, there are workers in the area who
are there daily. There are also devices like routers, printers,
etc. that are always in an area that need to be filtered out.

Once a person turns Wi-Fi on, a phone sends out a probe
burst to its saved networks, also known as the Preferred
Network List [6]. The null probe asks if any access points
are in the area. It identifies all of the access points (available
Wi-Fi networks) and populates the nearby networks list. Then
the device asks if it can connect. The phone continually asks if
the most recent network that it was connected to is still there.
The frequency of probe transmissions varies by device brand,
year, and OS version [6] [8].

In theory, one person can have as many hashed MACs (M)
in the database as the number of Devices on their person (D)
multiplied by the number of Saved Access Points (S) on each
device, plus the number of Nearby Access Points (N) in the
surrounding area that each device detects, plus one broadcast
probe. As shown in Fig. 2, as a person walks along a street,

Fig. 2. Scenario where one person walks down the street and generates M
entries in the database due to MAC randomization

the access points their device detects at the end of the street
may be different access points than those the start of the street
[9].

M = D ∗ (S +N + 1) (1)

There are several factors that go into how many access
points are detected and probed: the range of the device, the
battery level of the device, the type of device, the signal
strength of the access points, the number of buildings and
floors, the material that constructs the walls [5]. Therefore,
carefully documenting the range of each sensor and the spatial
layout of the area, along with details about the detected
devices, will give much needed insights into the reliability
of each sensor.

C. Related Work

Various methods have been applied to estimate indoor
occupancy. One method involves using audio recordings via
microphones to gauge room occupancy and automate HVAC
operations in construction environments [10]. However, this
method relies on the assumption that no significant audio
sources like TVs or audio players are present and that sound
from neighboring rooms is minimal. Another technique uti-
lizes Ultra Wide Band (UWB)-based time-delay strategies for
indoor human localization, assisting in determining human
positions within indoor spaces [11]. Additionally, studies have
explored the utilization of RFID technology to pinpoint occu-
pants wearing tags in indoor environments [12]. While offering
flexibility, it can be costly, and requires active user involvement
and consent. Using Infrared technology or computer vision to
recognize and count people are both costly and inconvenient.
These methods suffer from the same problems that they both
require line of sight, and both can lead to underestimation
if there is any occlusion, overlapping of people, that blocks
the detection [13]. RSSI or CSI-based methods utilize signals
to estimate crowd density. However, comprehensive training
and calibration for diverse environments are necessary for this
approach. While many of these techniques work indoors, they
cannot be applied to an outdoor environment where various
variables cannot be controlled.



Other work has estimated outdoor occupancy [14], but the
work in that area is limited due to the volatility of outdoor
environments. In a city environment, it makes most sense
to measure indoor and outdoor occupancy, as overcrowding
can be an issue both at the street level and inside of popular
buildings.

Past studies on Wi-Fi occupancy estimation typically in-
volve headcounting to establish a ground truth count of people.
Some researchers utilize mobile applications to track people
entering and exiting an area [6], offering precise second or
millisecond granularity, yet lacking categorization, such as
pedestrian, car, or bike, which could be used for future filter-
ing. Recognizing the significance of documenting researchers’
coordinates and experiment spatial layout, our emphasis lies
in creating maps for each experiment type outlined in our
Methods section.

III. METHODS

We performed three types of experiments: Counting Ex-
periments, Proximity Experiments, and Sensor Range Experi-
ments.

A. Dataset

In our database, a hashed MAC is saved with an event type
of either ”Status” or ”Leave” along with a timestamp. ”Status”
indicates that the device has been detected by the sensor and
is somewhere within range. If within 15 seconds the database
does not receive another ping from the device, the hashed
MAC is marked as ”Leave”, with its corresponding timestamp.

Along with collecting the timestamp of these ”Status” or
”Leave” events, the database also collects the zone identifier
of the sensor as well as an Received Signal Strength Indicator
(RSSI). The RSSI value serves as a metric for gauging a
device’s proximity to the sensor, spanning a range from -256
to 0 dBM (decibel-milliwatts). A reading of 0 signifies close
proximity to the sensor, while -256 indicates the maximum
distance a person can be from the sensor.

We proposed the addition of the daily SALT value storage in
the database. This strategic addition allowed us to hash MAC
addresses from our own devices, enabling a precise search for
our devices within the dataset.

Furthermore, we made additional database tables to track
our experiments and provide a framework for future re-
searchers to continue our work, which is further discussed in
Section III-E.

B. Counting Experiments

Counting experiments were conducted at sensor locations,
comparing real-time observations with sensor-recorded data.
Each experiment documented sensor location, collection coor-
dinates, time window, pedestrian count, ’other’ count (encom-
passing cars, bikes, etc.), and pedestrian direction (in or out
of range). Different time intervals (1, 5, and 10 minutes) and
collector positions (latitude and longitude) were tested.

Various methods, including positioning researchers at street
ends and tracking people coming in and going out, were

explored, as shown in Fig. 3. A mobile app for counting was
considered but deemed prone to human error. In cases of an
uneven number of collectors, one person was placed directly in
front of the sensor to tally people passing without considering
direction, as shown in Fig. 4.

Tallying on paper was used for experiments, with data
manually transferred to the database. Initially categorizing
people, bikes, and cars proved challenging with large groups,
prompting a focus on pedestrians and ‘other.’

Fig. 3. This sample Counting Experiment map shows four data collectors were
positioned at a set radius away from the sensor. The sensor is the central map
marker in this example. Red is a distance of 30 meters; blue is a distance of
40 meters from the sensor.

Fig. 4. This sample Counting Experiment map shows three data collectors
were positioned. Two at a set radius and one at the sensor location. Red is a
distance of 10 meters; blue is a distance of 20 meters from the sensor.

C. Proximity Experiments
We assessed the RSSI value’s reliability in detecting prox-

imity to the sensor, testing the hypothesis that it changes as a
person moves closer or further away. To create a pattern, we
intentionally toggled Wi-Fi, generating ”Status” and ”Leave”
timestamps. Experiments involved three to six individuals,
starting close to the sensor with Wi-Fi off, activating it
collectively, moving away, and repeating until beyond the
sensor with Wi-Fi off, activating it collectively, moving away,
and repeating until beyond the sensor’s coverage. To assess
the sensor’s effective range systematically, we moved outward
from the base, adhering to the street layout constraints. Mobile
devices were brought to the sensor’s base with Wi-Fi off,
then activated for a minute, deactivated, moved away, and
reactivated in a cyclic sequence. This deliberate pattern devel-
oped easy to follow irregularities in the database as devices
distanced themselves from the sensor.

D. Sensor Range Experiments
As we initiated proximity experiments using sensors with

an expected range of 50-60 meters, inconsistencies arose



in device detection, prompting us to modify sensor ranges
while meticulously documenting detected device specifics.
This naturalistic experiment focuses on tracking detected
device information such as manufacturer, model, OS, MAC
Randomization, power-saving mode, battery level, and access
point details without intentionally toggling Wi-Fi.

Our aim is to create a citywide point cloud of detected
devices, capturing real-life movement patterns indoors and
outdoors, simulating various individuals (tourists, workers, res-
idents) near sensor locations both inside and outside buildings.
The data recorded from these experiments, including device
and experiment details, can be found in the ”Device Table”
and ”Experiment Table” in Section III-E.

E. Implementation

The objective of this study was to establish a framework
that enables fellow researchers to leverage our initial data
and assessments for the refinement of a precise ground truth
algorithm. As part of our visualization tools, we developed
a real-time query-enabled density map using OpenStreetMap
and Leaflet. This tool allows users to filter data based on date
and time, providing a visual representation of people density
across the city.

Additionally, we constructed several essential database ta-
bles within the database to serve as a framework for forth-
coming experiments. These tables include:

• Experiment Table: This table stores comprehensive de-
tails about specific experiments, encompassing experi-
ment type, date, attendees, devices used (referenced from
the Device Table), and sensor zones (indicating sensor
locations).

• Device Table: Recognizing the significance of tracking
devices used in experiments, this table captures data
on device type, manufacturer, model, operating system,
Bluetooth settings, MAC randomization, battery-saving
mode, and battery percentage. All these parameters are
meticulously recorded within this table to analyze their
impact on the sensor-captured data.

• Data Collection Table: Dedicated to tracking data col-
lected during each Counting Experiment, this table docu-
ments start and end times, participant details, participant
coordinates, sensor location, pedestrian counts per time
interval, ’other’ counts, and additional notes.

• Event Table: To investigate potential correlations be-
tween city events and fluctuations in people density,
this table records event type, name, dates, sensor zones
associated with the event, and start and end times. Simul-
taneously, this table can be utilized for tracking planned
attacks on the system.

We named generated maps using the format “date-location-
type” to facilitate tracking, aiding future researchers in vi-
sualizing experiments and refining data collector positioning
relative to the surroundings. It is crucial to consider spatial
layout due to the sensors’ line-of-sight nature; their coverage
area forms a polygon, not a circular shape. Varying geographic
locations, with differences, like narrow streets or open spaces,

affect sensor effectiveness. To address potential crowding
disparities across regions of the city, we suggest the following
definitions:

• Frequency: The number of unique MAC Addresses in a
(1, 5, 10 or 30 minute, adjustable) time window.

• Occupied Space: Each person has a certain surface area
that they occupy. We choose a set value of 1 square meter
per person.

• Adjusted Frequency: Filtered version of frequency (our
estimate of how many people we think are there).

We have also developed a formula to estimate the percent of
“Crowdedness” in an area, where C represents Crowdedness,
O represents Occupied Space, F is Frequency, and A is Surface
Area.

C = (O ∗ F )/A (2)

IV. RESULTS

Results exhibited significant variability. One prominent is-
sue arose when, at seemingly arbitrary time windows, the
sensor failed to detect any traffic. Despite the presence of
individuals during counting experiments, the sensor occasion-
ally recorded zero traffic for multiple 5 and 10-minute time
windows. Possible explanations include individuals not carry-
ing Wi-Fi-enabled devices, having Wi-Fi turned off, moving
at a rapid pace, an object obstructing the sensor’s range, an
overload of data burdening the sensor, or many devices not
actively sending out probe requests at that moment.

Fig. 5. Blue represents the ground truth count of the number of people
entering the sensor range. Yellow represents the number of unique MAC
Addresses detected for each 5-minute window. This coincides with Fig. 3

Furthermore, the sensor’s range displayed considerable fluc-
tuations. Sensor range experiments revealed instances where
the sensor could capture traffic at a range exceeding the
specified maximum of 60 meters. Conversely, there were times
when the sensor’s data collection range was limited to only
40 meters in radius. The variability in sensor range appeared
somewhat arbitrary.

A noteworthy observation is that RSSI exhibited no dis-
cernible correlation with a person’s distance from the sensor.
Our experiments indicated that, regardless of proximity, RSSI



values demonstrated complete randomness, adding a layer of
complexity to the interpretation of distance-related data.

As mentioned earlier, the presence of MAC randomization
significantly distorts the outcomes. With each probe logged by
a sensor, even if originating from the same device, the MAC
address undergoes a change due to automatic MAC random-
ization. This behavior can create a misleading impression of
higher foot traffic in an area than what is genuinely present.

To address the challenge posed by devices that may be
consistently situated at a sensor location, such as routers,
printers, scooters, etc., we opted to gather data during the
early morning hours, specifically from 3 am to 4 am on
consecutive days. The rationale behind this approach was that
during these early hours, fewer people are typically in transit,
offering a baseline for devices that persistently occupy the
location throughout the day. However, despite mitigating some
discrepancies, the collected data proved to be inconsistent. The
sensor registered varying probe counts, ranging from over 100
on certain days to fewer than 10 or even none on others.

Sensor range experiments revealed how environmental con-
straints significantly affect sensor data. Thick building walls
emerged as a major hindrance, obstructing Wi-Fi probes from
reaching the sensor and limiting its effective range to more
line-of-sight transmission. This partially addresses the issue
of stable devices inside buildings, like printers and routers,
potentially distorting results. However, further exploration and
research are essential to fully understand this aspect.

V. DISCUSSION

A. Limitations and Future Work

Below, we outline ways in which our experimental methods
could be enhanced:

1) Counting Time Window: Using larger time windows,
such as 20 or 30 minutes, could offer a promising direction
for further research. If smaller window times have not shown
strong correlation with the data, it would not be worthwhile
to keep reducing window sizes. Given that no probes were
detected within several 5-minute windows, using a larger time
window might yield more accurate results.

2) Counting Area: Our counting experiments were con-
ducted in a 5-meter wide street that had only two points of
entrance or exit, but there are other areas in the city where the
sensors cover a large pedestrian mall area. Further research
needs to be done into how to set up counting experiments for
those areas.

3) Proximity: Another way to enhance proximity exper-
iments involves reversing the approach: moving toward the
sensor instead of away. The rationale is that a person’s body
positioned between the device and the sensor might act as a
barrier, hindering the probes’ ability to reach the sensor.

4) Sensor Range: Due to time limitations, we were unable
to fully execute this idea. Within a Sensor Range map, detected
devices could have been illustrated using color-coded map
markers, each color indicative of a distinct manufacturer.
Such representation aids in visualizing sensor range patterns
concerning specific device types. Furthermore, extending the

mapping to three dimensions would have provided even greater
detail, offering insights into the varying reach of sensors across
different floors of adjacent buildings.

5) Additional Limitations: Below, we list additional lim-
itations to the existing system and in the following section,
we provide recommendations to potentially mitigate some of
these issues.

• Sensor Sensitivity: The sensor’s sensitivity lacks con-
sistent tuning, resulting in varying probe detection capa-
bilities. It fluctuates between covering wider ranges and
narrowing down, leading to potential inconsistencies in
detecting probes. Additionally, there are instances where
the sensor fails to detect probes despite the presence of
individuals during various time windows.

• Limited Probe Type: The current sensor configuration is
limited to detecting Wi-Fi probes exclusively, neglecting
the potential detection of other probe types, such as
Bluetooth. This limitation restricts the system’s ability to
capture a comprehensive spectrum of signals, potentially
overlooking crucial data.

• Static Positioning: The system’s setup remains station-
ary with sensors placed in fixed locations. This static
positioning hinders complete coverage, as highlighted
by issues like the line-of-sight problem. Consequently,
certain areas might be inadequately monitored or missed
entirely due to this limited setup.

• Barriers: There are many barriers impacting the sensor
range. Some sensors are positioned behind windows
within buildings while others are mounted at significantly
elevated heights on buildings. This inconsistent line-of-
sight placement will affect the capabilities of each sensor.

• RSSI Unpredictability: RSSI proves to be an unreliable
measure for determining proximity to a sensor. Variabil-
ity in RSSI measurements could lead to inaccuracies
in assessing distance or proximity, compromising the
reliability of the system’s proximity estimations.

B. Recommendations

Expanding sensor capabilities beyond Wi-Fi to detect addi-
tional probe types like Bluetooth would enrich the system’s
dataset, capturing a wider spectrum of signals and behaviors
from various devices. This diversification not only offers
insights into user behaviors and interactions but also enhances
the system’s adaptability and analytical capacity, potentially
revealing hidden patterns for more informed decision-making.

Positioning sensors in diverse settings, such as behind
windows or at varying heights on buildings, introduces in-
consistency in the gathered data across sensors. Establish-
ing standardized guidelines for sensor placement regarding
both height and positioning could significantly enhance data
uniformity. This standardization would serve as a baseline,
fostering more precise and comparable results across sensors.
For the time being the database could store information on
sensor positioning. This could encompass essential details like
proximity to walls, elevation from ground level, indoor or
outdoor placement, and other pertinent positioning specifics.



Addressing the line-of-sight issue might involve deploying
multiple sensors in one location with different orientations.
Aggregating data from these diverse sensor placements could
potentially mitigate the line-of-sight problem, enhancing the
overall accuracy of data collection. However, implementing
this approach may increase costs due to the deployment of
multiple sensors.

The unreliability of random RSSI values and its lack
of correlation with proximity raise doubts about the value
of collecting this metric. Instead, leveraging Channel State
Information (CSI) could address these concerns. CSI offers
an in-depth understanding of the wireless channel between
a transmitter and receiver in networks like Wi-Fi or cellular
systems, going beyond basic signal strength measurements
[15] [16]. While the system might not require such intricate
details, understanding CSI could prove beneficial. However,
harnessing meaningful insights from CSI demands specialized
hardware and intricate signal processing techniques, surpass-
ing the complexity of metrics like RSSI. If it is not practical
to collect CSI data, then it may be possible to calibrate RSSI
or to discretize the RSSI values into ranges [17].

Many researchers validate Wi-Fi data against ground truth
by deploying diverse sensors like cameras, list sensors, pres-
sure sensors, and audio-processing tools to automatically
collect comprehensive measurements [2]. Recently, the City
of Bamberg integrated a camera into a new sensor location.
However, our observation revealed weaker correlations be-
tween our counting experiments and database results when
the data collection team operated within a confined radius
around the sensor. This discrepancy raises concerns about
the accuracy of mounting cameras at the exact sensor point.
To ensure precision, we propose conducting experiments with
overlapping sensors positioned at least 20 meters apart.

VI. CONCLUSION

In navigating the complexities arising from MAC Random-
ization and inconsistencies in Wi-Fi probing, researchers face
the imperative of gathering comprehensive environmental data.
This data is crucial for refining estimates related to overcrowd-
ing. Beyond the reliance on Wi-Fi data alone, documenting the
spatial layout of sensor locations becomes pivotal due to the
variable surface area coverage associated with these sensors,
as highlighted by numerous factors.

To address these challenges, we advocate for a structured
framework allowing researchers to gather extensive data, map
out experiments meticulously, and gain deeper insights into
each sensor’s capabilities. Focusing on counting experiments,
proximity assessments, and sensor range analyses at individ-
ual locations enables the discernment of behavioral patterns
unique to each sensor. This data, instrumental in decision-
making processes like optimal sensor placement and network
expansion, establishes a framework for comprehensive analy-
sis.

Introducing defined metrics such as Frequency, Occupied
Space, Adjusted Frequency, and Crowdedness offers a stan-
dardized approach, facilitating cohesive analysis. Implement-

ing consistent counting techniques and database structuring
for sensor range mapping ensures the establishment of a
robust foundation for ongoing smart city research endeavors.
By meticulously considering spatial factors, researchers can
construct more trustworthy models and predictions concerning
crowd density, ultimately advancing the efficacy of a smart city
planning and management.
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