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Abstract—In this paper, we introduce a novel approach for
anomaly detection tailored to smart city infrastructures, utiliz-
ing a combination of regression algorithms. Our methodology
employs two distinct regression models to generate future pre-
dictions from a given dataset. The primary model is crafted
to yield high-fidelity predictions, while the secondary model is
purposefully designed to introduce a degree of noise. Both models
work together as a defense against DoS and Flooding attacks
(or other attacks of the same nature) through the detection
of abnormal levels of data inflow (detection of outliers). We
calculate the alignment cost, or Euclidean distance, between
the predictions from these two models, establishing a threshold
against which real future traffic can be evaluated. The alignment
cost or euclidean distance of the actual traffic is computed
in relation to the high-quality predictions and then compared
with the established threshold to pinpoint anomalies. Through
experimentation with various regression algorithms, including
linear regression, support vector regression, decision trees, etc.,
we identified an optimal combination for peak performance.
Our evaluations, rooted in smart city datasets, emphasize the
strength and consistency of this dual-model approach which
outperformed traditional methods. Conclusively, the dual-model
anomaly detection framework we propose stands out as an
invaluable tool in defending smart city infrastructures from data
irregularities and potential threats, highlighting the criticality of
bespoke solutions in contemporary urban digital environments.

Index Terms—Security, Flooding attacks, Denial of Service
Attacks, Anomaly Detection, Pattern Recognition, Outlier De-
tection.

I. INTRODUCTION

The emergence of smart cities—urban environments en-
riched with interconnected devices, sensors, and advanced
information systems [1] — promises transformative changes
in urban life and governance [2]. Such ecosystems, however,
bring forth a plethora of data that necessitates rigorous moni-
toring to ensure data integrity and security [3].

Flooding attacks and anomalies in traffic in smart city envi-
ronments exemplify critical challenges that can severely com-
promise the entire urban digital infrastructure [4]. Anomalies,
if undetected, can lead to serious repercussions, affecting the
decision-making processes, operational efficiency, and even
public safety [5]. While a variety of techniques have been pro-
posed for anomaly detection [6], smart city-specific datasets
with their unique characteristics [7] and high data volume

pose significant challenges to these traditional methods [8].
In addition, contingent on smart city infrastructure, tailored
techniques are required for detecting anomalies [9].

To address this pressing matter, we propose a novel tech-
nique to detect outliers: a dual-model regression-based ap-
proach tailored specifically for flooding and DoS attacks in
smart city data streams (however, the same proposed model
could be used for the detection of outliers in some other fields
with time series and non-linear nature) [10], [11].

Past approaches to anomaly detection, particularly for time-
series data, have often been limited in their adaptability and
sensitivity, especially when applied to intricate and voluminous
smart city datasets [6], [12]. Our dual-model system, by
contrast, has been designed with adaptability at its core,
ensuring robust detection capabilities across diverse urban
configurations [13].

Lastly, ensuring the security of data streams within smart
cities is not merely a technical necessity but a critical factor
in realizing the full potential of urban digital transformations
[14]. Our proposed dual-model anomaly detection system
stands at the forefront of efforts to build secure, reliable, and
resilient smart city infrastructures [2], [15]. Such endeavors
are paramount for harnessing the true potential of urban
digitization, making cities safer, more efficient, and more
responsive to their inhabitants’ needs [16], [17].

II. RELATED WORK

Anomaly detection in time series data and non-linear func-
tions is a problem continuously studied with applications in
various fields beyond Smart cities, including finance, manu-
facturing, healthcare, logistics, and industrial automation [18]
[19]. Existing approaches in the literature can be broadly
categorized into several methods [20], [21].

1) Statistical Approaches have been a foundation for
anomaly detection in various domains [22].

2) Machine Learning Approaches have emerged as a pow-
erful tool in understanding and identifying anomalies,
especially in the domain of networking and system
monitoring [23].

3) Deep Learning Approaches have seen a rise due to
their capabilities in handling vast amounts of data and



the intricate patterns they can model [20]. For instance,
GANs have been employed for anomaly detection in
time series data [24], [25].

4) Regression-based Approaches have shown potential,
especially when dealing with Wi-Fi signals and device
detection challenges [12].

5) Hybrid Approaches combine the strengths of various
algorithms to offer enhanced detection capabilities [21],
[26].

Our proposed approach is a new methodology comple-
mentary to the existing methods that can be used to detect
outliers by combining two regression algorithms with different
characteristics to establish a robust threshold for anomaly
detection.

III. PROBLEM STATEMENT AND SOLUTION

Detecting anomalies in time series data and non-linear
functions, especially those commonly observed in smart cities,
poses significant challenges. The dynamic nature of this data,
intertwined with noise and prevalent non-linear patterns, ex-
acerbates these challenges [26]. Traditional statistical and ma-
chine learning techniques for anomaly detection often struggle
to adapt to evolving patterns, handle noisy data efficiently,
or require complex feature engineering [8]. While regression-
based methods have potential in predictive modeling for such
scenarios, they are notoriously vulnerable to noise and outliers
[12].

In our proposed solution, we advocate for a unique appli-
cation of regression algorithms for anomaly detection in time
series and non-linear functions. We generate two distinct pre-
dictions on future data behaviors using two separate regression
algorithms:

• Pbest: Derived from our top-tier regression algorithm, this
prediction is optimized for accuracy.

• Preference: Sourced from our secondary regression algo-
rithm, this prediction intentionally produces slightly nois-
ier results. If necessary, we can introduce additional noise
to expand our anomaly detection threshold.

The central tenet of our approach is that the alignment cost
or Euclidean distance (either through Dynamic Time Warping
(DTW) or standard Euclidean measures) between the two
predictions (Pbest and Preference) provides a spectrum within
which we anticipate the future real traffic to align.

To evaluate the real traffic, denoted by Treal, we compute
the alignment cost or Euclidean distance between Treal and
Pbest. The crux of our methodology is the assumption that this
computed alignment cost or distance should fall within the
threshold delineated by the two predictions. If the real traffic
deviates beyond this boundary, it signifies an anomaly.

Our method offers the following advantages:
1) A merger of the predictive capabilities of regression

models with the adaptability of a threshold-centric ap-
proach.

2) A significant reduction in the susceptibility to noise
and outliers, a common issue with regression-based
methods. This is achieved by incorporating a noise-
tolerant reference prediction.

3) The inherent flexibility of the method makes it compat-
ible with any regression algorithm(using batch learning
or online learning), thus ensuring its applicability across
diverse datasets and use cases.

IV. METHODOLOGY

A. Data Pre-processing

Time series and non-linear datasets inherently contain com-
plexities that demand careful preprocessing. These temporal
datasets present distinct temporal dependencies crucial for
effective analysis. In our study, dates (time variable) serve
as independent variables, with a counter value or count as the
dependent variable (as shown in Table I). Proper preprocessing
of these datasets is paramount, influencing the efficacy of
regression models and the precision of anomaly detection.

The fundamental steps of our pre-processing method are:
Date Parsing, Resampling, Handling Missing Values, Station-
arity, and Feature Engineering.

Our approach bins the timestamps on data into 5-minute
windows. Additionally, it is worth noting that we initially used
a 5-minute window as it served as a foundational aspect of
our project, primarily due to the need for consistency across
various project components. However, this can be modified
according to the user’s needs. We also tested our approach
with different window gaps, such as 1 minute and 2 minutes,
and obtained the similar results.

B. Regression Algorithms

This study focuses on two regression algorithms that pro-
duced the best results for our use case: Decision Tree Re-
gressor (DTR) and Random Forest Regressor (RFR) [27].
However, we tried multiple regression algorithms with differ-
ent techniques, including batch learning and online learning.
In our case, DTR and RFR were the models that performed the
best (using batch learning). Our approach is not specifically
limited to these regression algorithms and other regressors can
be plugged in as needed for different applications or as new
regressors are devised.

C. Threshold Calculation

1) Dynamic Time Warping (DTW): Dynamic Time Warping
(DTW) is a technique used for measuring similarity between
two temporal sequences that may vary in time, intensity or
speed. It calculates an alignment cost that represents the
best alignment between two sequences regardless of their
non-linear variations in time. Given two sequences A =
a1, a2, . . . , an and B = b1, b2, . . . , bm, DTW computes the
optimal alignment cost between A and B by finding the
path through the cost matrix C that minimizes the cumulative
distance. The cost matrix C is defined as [28]:

Ci,j = d(ai, bj) + min{Ci−1,j , Ci,j−1, Ci−1,j−1} (1)



where d(ai, bj) is the distance between elements ai and bj
and is usually calculated using the Euclidean distance.

2) Euclidean Distance: Euclidean distance is a metric used
to measure the similarity between two vectors. Given two
vectors A = a1, a2, . . . , an and B = b1, b2, . . . , bm, the
Euclidean distance between A and B is defined as [29]:

deuc(A,B) =

√√√√ n∑
i=1

(ai − bi)2 (2)

3) Threshold Calculation: In this study, we calculate
thresholds using both the alignment cost (DTW) and the Eu-
clidean distance. The goal is to establish a threshold that rep-
resents the expected distance between two future predictions:
one that is the best possible prediction (Future Prediction 1)
and another that serves as a reference point (Future Prediction
2). The reference prediction is preferably a bit noisy, allowing
for more flexibility in the threshold.

Given two future predictions A and B, the alignment cost
threshold is calculated as:

Tac = DTW(A,B) (3)

and the Euclidean distance threshold is calculated as:

Ted = deuc(A,B) (4)

where DTW(A,B) is the alignment cost between A and B,
and deuc(A,B) is the Euclidean distance between A and B.

We also tested other algorithms to define a threshold;
however, we did not achieve the results we were aiming for.
Some of the algorithms we tested included: Cosine Similarity,
Cross-Correlation, and Pearson Correlation Coefficient.

D. Anomaly Detection

Taking into account the equations in 3 and 4, we then
analyze the real traffic by calculating the alignment cost
or Euclidean distance between the real traffic and the best
prediction (Pbest). If the calculated distance is within the
previously computed threshold, the real traffic is considered
normal; otherwise, it is considered anomalous. Specifically,
the real traffic C is considered normal if:

DTW(A,C) ≤ Tac or deuc(A,C) ≤ Ted (5)

where Tac is the alignment cost threshold, and Ted is the
Euclidean distance threshold.

The threshold calculation approach was implemented as
part of our experiment. Data can be sourced from various
formats or directly collected in real-time. In our experiment,
we analyze data both in real-time (running simulation by
replaying real-world data) and from CSV files. The procedure
involves merging future predictions with actual traffic data,
addressing any data gaps, and aggregating the information
into 5-minute intervals. Following this, the code computes the
alignment cost or Euclidean distance between these sequences,

establishing a threshold representing the expected distance
between the predictions and real data.

V. EXPERIMENT SETUP

In this section, we outline the experimental configuration
employed to assess the efficiency of our proposed approach in
identifying anomalies within the data stream from the smart
city. (Figure 1). In the next sub-sections, we illustrate the
deployed topology, data collection process, and the specifics
of our anomaly detection implementation.

A. Deployment Topology

Our experimental setup, we were provided access to, a
smart city environment, which currently consists of six Wi-Fi
probing sensors that are deployed across the busiest areas of
Bamberg, Germany (see Figure 1) [12]. The purpose of these
sensors is to capture anonymized probe requests from Wi-Fi-
enabled devices, generating real-time data that represents the
overall network traffic in the city.

As shown in Figure 1, the Wi-Fi sensors communicate
with a processing backend server using TCP. The backend
server receives JSON-formatted requests from the sensors and
implements our proposed anomaly detection algorithm. The
processed data, either tagged as normal or anomalous, is then
stored in a database. APIs can subsequently consume the
stored data for additional processing.

B. Data Collection and Pre-processing

The Wi-Fi sensors collect probe requests, which are small
data packets sent by Wi-Fi-enabled devices to discover nearby
Wi-Fi networks as seen in Figure 1. These probe requests
contain information such as the device’s MAC address, times-
tamps, and additional details about the street and city, among
other things. In our experimental setup, the sensors capture
these probe requests and anonymize the data to protect indi-
viduals’ privacy. The anonymized data is then encapsulated
in JSON format before being sent to the backend server via
TCP/HTTPS. The data included the following fields:

• eventype: Event defined in our sensors based on their
position and status.

• epocutc: Timestamp about when the event took place.
• zone: Sensor’s location in the city.
• mac address: Hash of the MAC addresses of individuals,

hashed using SHA-224.
• RSSI: RSSI value of each device in the vicinity.
• techtype: Technology type used for data collection. For

this study, only WiFi receptors were employed.

At the backend server, the incoming JSON requests are
parsed, and the relevant information is extracted for further
processing. The data is then pre-processed, following the steps
outlined in Section IV-A to prepare it for anomaly detection.



Fig. 1. Smart City Architecture Used For Our Experiments and Demonstration of WiFi Probe Reception by the Sensor

C. Anomaly Detection and Defense Mechanisms

Our anomaly detection algorithm, as presented in previous
sections, is implemented on the backend server. It analyzes
the incoming traffic, represented by probe request data from
the Wi-Fi sensors, to identify any deviations from expected
patterns. The primary focus of our experiment is to detect
anomalies/outliers indicative of DoS, DDoS, flooding attacks,
or other malicious activities of the same nature that could
disrupt the city’s network infrastructure.

If the algorithm detects an anomaly, the server can trigger
predefined protection mechanisms, such as, another defense
mechanism, alerting network administrators, blocking suspi-
cious traffic, or adjusting network parameters to mitigate the
impact of the attack. Conversely, if no anomalies are detected,
the traffic is considered legitimate and allowed to proceed to
the database, where APIs can access and consume the data for
various applications. Note that since our algorithm works on
both streaming data and datasets, the algorithm can be re-run
on existing datasets if better regressors for a particular attack
are developed.

This experimental setup is designed to validate the effec-
tiveness of our proposed anomaly detection approach in a
real-world smart city environment, emphasizing its potential
to protect against malicious network activities.

VI. EVALUATION AND RESULTS

A. Preprocessing and Feature Engineering

The dataset used in the study contained the fields: year,
month, day, hour, minute, second, and counter. Interaction
terms were introduced in the data to capture inter-feature
relationships and improve model performance (Feature en-
gineering part indicated in section IV-A). These interactions
were obtained by multiplying two features together to create
a new feature. A sample of the data after feature engineering
is shown in Table II.

TABLE I
SAMPLE DATA FROM THE DATASETS

Year Month Day Hour Minute Second Counter
2023 1 30 12 33 2 2
2023 1 30 12 33 4 3
. . . . . . . . . . . . . . . . . . . . .

2023 7 10 0 0 8 1
2023 7 10 0 0 18 1

B. Model Training

Our model was trained on a 3 million entry dataset. We
used an 80/20% split of training to testing data and selected
the best performing models. For our research, we utilized the
scikit-learn library [30], but also tried online-learning
libraries like River [31]. Furthermore, the hyperparameters
used for training our models were set to their default values in
scikit-learn (except number of estimators = 1
and random_state = 0 for RFR). We experimented with
various configurations, but in our specific scenario, they did
not yield a substantial impact.

C. Threshold Generation

Algorithm 1 describes the threshold generation process.

The thresholds generated from the predictive models were
used to evaluate real traffic data. They provided an effective
means of identifying abnormal traffic patterns and alerting
for potential flooding or DoS attacks. To calculate the eu-
clidean distance or alignment cost for the real traffic we
compared the real traffic data with the algorithm with best
performance(Pbest).

D. Problem to solve

Figure 2 illustrates the category of Non-linear Time Series
challenges relevant to Smart Cities. The dataset spans 7
months, from January 2023 to July 2023. However, for the
graph presented in this paper (Figure 2), we have chosen to
depict data from just a single week.



TABLE II
SAMPLE DATA AFTER FEATURE ENGINEERING

Table I values(except counter) Interactions Counter
month day day hour month hour hour min hour sec min sec

For our final dataset month*day day*hour month*hour hour*min hour*sec min*sec 2
we copied the same values from 1 84 12 550 120 1 3

Table I, except . . . . . . . . . . . . . . . . . . . . .
the values in counter and year 1 30 72 451 1288 100 5

Algorithm 1 Threshold Generation
Require: reference data: ref data, prediction data:

pred data or real data
1: Merge ref data and pred data or real data on time

columns
2: Fill NaN values in counts
3: Create a ’datetime’ column from separate date and time

columns
4: Define the frequency for the grouping: freq ←′ 5T ′

5: Initialize empty list: results← []
6: for each group g in

merged data.groupby(pd.Grouper(freq=freq)) do
7: Calculate ed or ac between real and predicted values

in g
8: Extract date-time details dt
9: Append (dt, ed or ac) to results

10: end for
11: Save results to a file, Memory, or DB

Fig. 2. One week example of the dataset.

E. Predictions vs real traffic

In Figure 3 we can see the plots for the real traffic that we
are evaluating with our algorithm, the predictions with our best
model (in red), which is almost identical to the real traffic (in
blue), and lastly the noisy prediction with our second model
that we used as a reference point to create our threshold(in
purple).

In our dual-model approach, the secondary prediction was
derived from what we discerned as the second-best regression
model. To create a meaningful differential for establishing
a threshold, we deliberately introduced a controlled amount

of random noise. It is essential to note that during our
experimental phase, we evaluated both the Euclidean distance
and the alignment cost across a myriad of models, ultimately
selecting those that demonstrated superior performance in the
smart-city domain.

Given:
• P1 as the prediction of the primary (best) model.
• P2 as the prediction of the secondary (second-best) model

before noise introduction.
• N as the random noise vector.
• ED as the Euclidean distance.
• AC as the alignment cost.
Note: The noise N introduced in this experiment was

generated by multiplying the results of our second-best model
with a random number ranging from 1 to 3.5, however, people
can use any other type of technique to introduce noise with the
objective of expanding the threshold that we want to produce
for the detection of outliers.

The prediction with noise for the secondary model can be
represented as:

P ′
2 = P2 +N (6)

The Euclidean distance and alignment cost can then be
computed between P1 and P ′

2 to determine anomalies:

ED(P1, P
′
2) (7)

AC(P1, P
′
2) (8)

Moreover, we also appraised the performance of our se-
lected models using multiple evaluation metrics including
the R2 score [32], Mean Absolute Error (MAE) [33], Mean
Squared Error (MSE) [34], and Root Mean Squared Error
(RMSE) [35]. These metrics offer insights into the accuracy
and reliability of our regression models.

The results from our evaluation are summarized in the table
III:

TABLE III
SUMMARY OF REGRESSOR ERROR RESULTS

Evaluation methods DTR RFR (without noise)
R2 -0.809517785 -0.816383466
MAE 3.149929931 3.190064165
MSE 34.34288167 34.4731856
RMSE 5.860279999 5.871387025



Fig. 3. Comparison for our best model vs reference point model vs real traffic

Upon examining the values presented in the table, we
observe that the R2 values for DTR marginally surpass those
for RFR, and similar trends appear across MAE, MSE, and
RMSE. The data stream emanating from smart city infrastruc-
tures is characteristically inundated with noise and exhibits
non-linearity. Thus, achieving perfect evaluation scores can
be elusive, especially in complex scenarios.

Furthermore, it’s crucial to comprehend that these evaluation
metrics, while offering insights into the model’s performance,
should be considered in conjunction with the specific nature
of the data and the application’s context. This observation
resonates with findings in the literature, where the intricacies
of dealing with noisy and non-linear data in networking-
monitoring systems lead to less-than-perfect R2 values [23]
Our research emphasizes the significance of adaptive modeling
in smart city environments, focusing not merely on achieving
high scores but on building models that adeptly discern
anomalies amidst the vastness of urban digital data streams.

F. Analysis of Euclidean Distance Outcomes

Figure 4 delineates the derived threshold juxtaposed against
the genuine Euclidean distance associated with real-world
traffic. This congruence substantiates that our algorithmic
approach is robust and aptly suitable for handling challenges
inherent to time series data as well as nonlinear complexities
(Characteristics of smart city traffic).

G. Evaluation of Alignment Cost Metrics

Figure 5 juxtaposes the calculated alignment cost threshold
with the actual alignment cost observed in real-world traffic.
This visual representation further highlights the effectiveness
of our proposed algorithmic approaches, showcasing their
proficiency in handling time series challenges and nonlinear
dynamics.

Fig. 4. Comparison of Established Euclidean Distance Threshold(green) to
Actual Traffic Euclidean Distance(purple).

Fig. 5. Contrast between Projected Alignment Cost Threshold(black) and
Actual Traffic Alignment Cost(purple)



H. Benchmarking Proposed Methodology Against Statistical
Techniques

Figure 6 displays the performance of various thresholds
in relation to the true alignment cost. The distinct curves
represent:

• The real alignment cost (dashed purple curve).
• The anomaly detection threshold derived from our pro-

posed technique (solid black curve).
• An alternative threshold determined using the real statis-

tics from the preceding day (brown dash-dot curve).
• A threshold established by averaging statistical values

from the past week (magenta dotted curve).
Our evaluation also extended to setting thresholds based

on statistical analysis. Specifically, we assessed the alignment
cost (and, although not illustrated here, the Euclidean distance)
between our premier model and the statistical outcomes from
the day prior, as well as the cumulative averages from the last
seven days. As Figure 6 elucidates, these statistically derived
thresholds did not resonate optimally with the real-world
alignment costs. This stark contrast accentuates the superior
efficacy of our proposed approach in accurately mirroring the
genuine alignment costs.

τproposed = fregression(data) (9)

τday = fstatistical(dataday−1) (10)

τweek =
1

7

7∑
i=1

fstatistical(dataday−i) (11)

Where:
• τproposed represents the threshold from our proposed

methodology.
• τday denotes the threshold derived from the prior day’s

statistics.
• τweek symbolizes the threshold computed by averaging

the last week’s statistical data.

As we can see from Figure 6, our proposed method is more
suitable than the other approaches, which is another way to
demonstrate the value of our proposal.

I. Performance Analysis under Flooding Attack

Figure 7 showcases the system’s capability to detect anoma-
lies even under subtle adversarial conditions, such as a sim-
ulated flooding attack (this encompasses DoS, replay attacks,
and DDoS attacks as well for our smart city environment).
The alignment cost resulting from the fabricated ”flooding
attack data” significantly exceeds the threshold defined by
our methodology. This contrast reaffirms the sensitivity and
robustness of our anomaly detection mechanism. In algorithm
2 we show the attack model we used for our testing.

To simulate the attack, fake data was generated by dis-
patching random JSON queries at intervals ranging between
40 to 200 within a 5-minute span. This volume is markedly
higher than the typical peak observed in legitimate traffic

(approximately 50 queries). However, it is worth noting that in
real-world attack scenarios, the volume of such queries could
escalate into thousands. This underlines the superior sensitivity
of our model: if it can accurately identify anomalies with
such low-level surges, detecting larger-scale attacks becomes
exponentially more straightforward.

Algorithm 2 Attacker Model and Flooding Attack Simulation
1: Context: The primary threat for our Smart city infras-

tructure is flooding attacks aiming to overwhelm sensors
or backends by inundating the system with an excessive
number of probe requests, often accompanied by forged
MAC addresses.

2: Attack Techniques:
3: 1. MAC Address Spoofing:
4: Craft random MAC addresses to impersonate numerous

devices and camouflage malicious traffic amidst legitimate
requests.

Require: Number of MACs to generate: N
5: for i = 1 to N do
6: MAC addr ← generateRandomMAC()
7: end for
8: 2. Probe Request Flood:
9: Deploy algorithms from malicious devices (e.g., com-

promised laptops) to incessantly send probe requests,
exhausting WiFi sensors’ resources.

10: sendProbeRequest(MAC addr)
11: 3. Volume Amplification:
Require: Duration: D
12: while D not elapsed do
13: MAC addr list← generateMultipleMACs()
14: sendVolumeFlood(MAC addr list)
15: end while
16: 4. Replay Attacks:
17: Eavesdrop and capture legitimate packets, then resend

them to cause confusion and potential malfunctions.
18: if Replay attack enabled then
19: captured packets← eavesdrop()
20: resend(captured packets)
21: end if

Mathematically, the surge in traffic can be represented as:

∆Qattack = Qattack −Qnormal (12)

Where:
• Qattack denotes the number of queries during the flooding

attack.
• Qnormal signifies the standard query count in genuine

traffic.
Given our observed values, we have: ∆Qattack = 150.
The modest value of ∆Qattack and our model’s ability to

spot it elucidates its refined sensitivity. With the ever-evolving
threat landscape, having an anomaly detection system with
such sensitivity becomes paramount for maintaining robust
security postures.



Fig. 6. Comparative Analysis: Proposed Model, Reference Point Model, and Real Traffic Alignment Cost

Fig. 7. Anomaly Detection Performance during a Simulated Flooding Attack

VII. ANOMALY DETECTION USING THE ANOMALY
INDICATOR

An essential aspect of anomaly detection, especially in
complex environments like smart cities, is to have a quantifi-
able measure that can effectively differentiate between typical
and anomalous data. To this end, we introduce an Anomaly
Indicator (AI) given by the formula:

AI =
Threshold value

Real value
(13)

The AI serves as a decisive metric in our analysis. When
AI is greater than or equal to 1, it suggests that the observed
traffic conforms to the expected patterns and does not exhibit
any anomalies. Conversely, if AI is less than 1, it indicates the
presence of anomalous behavior in the traffic data.

This straightforward yet effective metric provides a clear
boundary that distinguishes between benign and malign data.
By using AI, we can swiftly ascertain the nature of the traffic
without delving into the intricacies of underlying patterns or
dependencies.

From Figure 8, the calculated Anomaly Indicator (AI)
values further emphasize the accuracy of our model in dif-
ferentiating between benign and malign data. Specifically,
when using the formula 13, the benign data (depicted in blue)
consistently results in AI values closer to or greater than 1,
indicating the absence of anomalies. In contrast, the malign
data (depicted in coral) produces AI values substantially below
1, signifying the presence of anomalies. This clear distinction
not only highlights the efficacy of our anomaly detection
mechanism but also underscores its vital role in safeguarding
smart city infrastructures. The model’s consistent performance



Fig. 8. Anomaly Indicator vs Date for Benign and Malign Data

across different data points further solidifies the robustness of
our proposed approach.

Furthermore, during our experiments, we subjected our de-
fense mechanism to a rigorous testing environment (simulation
of our real environment). Over a span of 168 hours(one
week), we dispatched approximately 80,640 probe requests
to evaluate the system’s robustness (We chose to use our
euclidean distance results). The results, as Table IV shows,
were commendable:

TABLE IV
PERFORMANCE METRICS OF THE DEFENSE MECHANISM

Metric Score

Accuracy 100%
Precision 100%
Recall 100%
F1 Score 100%
True Positive Rate (TP) 100%
False Positive Rate (FP) 0%

While we are optimistic about the reproducibility and con-
sistency of these results in real-world scenarios, we acknowl-
edge the importance of comprehensive testing. Although the
current outcomes are promising, we believe in leaving no stone
unturned. As a part of our ongoing research, we are in the
process of evaluating our defense mechanism against an even
broader array of attack scenarios in our real infrastructure.

VIII. DISCUSSION

Smart Cities’ monitoring applications produce copious
amounts of dynamic data. These data streams are often
characterized by time series and exhibit non-linear patterns,
making anomaly detection a significant challenge. The in-
tricacies of urban data, such as fluctuations, noise, evolving
non-linearities, and the sheer complexity, can render many
conventional methods inadequate in a smart city setting.
The approach presented in this paper provides a specialized
solution for these challenges, capitalizing on the predictive
capabilities of regression models coupled with the flexibility
of a threshold-based method.

A prime advantage of our method is its adaptability. It
presents a consistent framework suitable for navigating the
diverse datasets typical of smart cities, irrespective of the
regression algorithm employed. Moreover, our approach is
designed to factor in noise when making predictions with
the secondary model. This design inherently offers resilience
against outliers, thus mitigating a prevalent shortcoming of
conventional regression techniques.

For practical deployment in real-world scenarios, it’s imper-
ative to consider online or pseudo-online learning mechanisms
that continually update the model. While online learning
updates the model as new data arrives, our current study
utilizes batch learning. This means our model undergoes re-
training with each new data batch from the Wifi sensors.
Future work will address these aspects, striving for a more
seamless and real-time model update mechanism.

IX. CONCLUSION

In the intricate and dynamic data landscape of smart cities,
our results underscore the dual-model regression’s effective-
ness in identifying anomalies. Compared to traditional bench-
marks like prior day metrics or weekly averages, our method
aligns better with actual urban traffic patterns, showcasing the
strength and resilience of our approach for smart city data.

In this paper, we’ve adopted a standardized methodology
to reproduce our results, using the best-performing model to
compare with actual traffic and employing the second-best
model as a reference. However, it’s important to understand
that the choice of the reference algorithm does not need to be
strictly the second-best model. As long as the chosen reference
model can produce an AC or EC that yields a useful threshold
for outliers, it’s a viable option. Similarly, while we used
the top-performing model for our comparison, one could also
consider other models that give accurate predictions, and better
performance e.g. In essence, we’ve charted a structured path
for achieving our results, but there’s room for variation in the
approach without compromising the objectives.

Lastly, this research has been oriented towards smart cities,
its foundations could very likely be beneficial in a wider
context in time series or non-linear dynamics. Thus, while the
immediate focus has been on urban digital ecosystems, the
potential universality of the approach beckons further explo-
ration. Future endeavors could delve deeper into refining this
methodology, gauging its performance across diverse datasets,
and extending its horizons beyond smart cities to address
broader challenges in time series and non-linear domains.
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